
Initial investigation of an encoder-decoder end-to-end TTS framework using
marginalization of monotonic hard latent alignments

Yusuke Yasuda1,3, Xin Wang1, Junichi Yamagishi1,2,3

1National Institute of Informatics, Japan 2The University of Edinburgh, Edinburgh, UK
3SOKENDAI (The Graduate University for Advanced Studies), Japan

yasuda@nii.ac.jp, wangxin@nii.ac.jp, jyamagis@nii.ac.jp

Abstract
End-to-end text-to-speech (TTS) synthesis is a method that di-
rectly converts input text to output acoustic features using a sin-
gle network. A recent advance of end-to-end TTS is due to a key
technique called attention mechanisms, and all successful meth-
ods proposed so far have been based on soft attention mecha-
nisms. However, although network structures are becoming in-
creasingly complex, end-to-end TTS systems with soft attention
mechanisms may still fail to learn and to predict accurate align-
ment between the input and output. This may be because the
soft attention mechanisms are too flexible. Therefore, we pro-
pose an approach that has more explicit but natural constraints
suitable for speech signals to make alignment learning and pre-
diction of end-to-end TTS systems more robust. The proposed
system, with the constrained alignment scheme borrowed from
segment-to-segment neural transduction (SSNT), directly cal-
culates the joint probability of acoustic features and alignment
given an input text. The alignment is designed to be hard and
monotonically increase by considering the speech nature, and it
is treated as a latent variable and marginalized during training.
During prediction, both the alignment and acoustic features can
be generated from the probabilistic distributions. The advan-
tages of our approach are that we can simplify many modules
for the soft attention and that we can train the end-to-end TTS
model using a single likelihood function. As far as we know,
our approach is the first end-to-end TTS without a soft attention
mechanism.
Index Terms: text-to-speech synthesis, end-to-end, neural net-
work

1. Introduction
End-to-end text-to-speech (TTS) synthesis method directly con-
verts an input letter or phoneme sequence to an output acoustic
feature sequence. All methods proposed so far have been based
on an encoder-decoder sequence-to-sequence model with a soft
attention mechanism [1, 2, 3, 4, 5, 6].

The aforementioned frameworks are very promising, and
end-to-end TTS systems such as Tacotron 2 [5] can produce
synthetic speech with a quality comparable to that of human
speech. The use of neural waveform models is one of the
reasons, but we believe that improved model architectures are
another important reasons for the improved performance of
the end-to-end TTS systems. For example, a transition from
Tacotron [2] to Tacotron 2 [5] has extended the attention mech-
anism from additive attention [7] to location sensitive atten-
tion [8], post-net to improve predicted acoustic features, an ad-
ditional stop flag prediction network, non-deterministic output
generation using dropout during inference, and a significant in-
crease in model parameter size. However, even if the atten-
tion network is well-trained, it may produce unacceptable errors

such as skipping input words, repeating the same phrases, and
prolonging the same sounds.

Therefore, efforts have been made to improve or constrain
soft attention mechanisms for end-to-end TTS systems. Most
of them aim to enforce a monotonic alignment structure in or-
der to reduce alignment errors. Such attempts include location-
sensitive attention [8], monotonic attention [9], and forward at-
tention [10]. In addition, techniques other than the attention
mechanism itself can enforce monotonic alignment, such as
window masking [4, 10] and penalty loss for off-diagonal at-
tention distribution [11]. Thus, although the quality of synthetic
speech generated from end-to-end TTS systems is very high, the
model architecture and its objective function are very complex,
and many engineering tricks are used.

Can we construct an encoder-decoder end-to-end TTS sys-
tem without using such complicated networks and engineering
tricks? We hypothesize that the main cause is the soft atten-
tion mechanisms. Therefore, we propose a new end-to-end
TTS system that can be optimized based on a likelihood func-
tion only. Furthermore, the proposed TTS system uses more
explicit but natural constraints for speech signals instead of
soft attention mechanisms and should make alignment learning
more robust and efficient. The constrained alignment is concep-
tually borrowed from segment-to-segment neural transduction
(SSNT) [12, 13] and is extended to continuous outputs 1. Be-
cause the SSNT calculates the joint probability of an acoustic
feature sequence and an alignment given the input text, we can
compute the likelihood function by marginalizing all possible
alignments. The alignments are hard and monotonic increase
by definition.

The proposed framework and likelihood function are sim-
ilar to those of a hidden Markov model (HMM) because all
the possible alignments can be marginalized using a forward-
backward algorithm over a trellis consisting of input labels and
the output spectrum. However, unlike the conventional HMM
or its mixture density network-based HMM [15], its transition
and output probabilities are computed using encoder-decoder
autoregressive neural networks like Tacotron. In other words,
an input sequence is nonlinearly transformed into an encoded
vector, and both the output and transition probabilities are com-
puted in a non-linear autoregressive manner in the SSNT-based
TTS.

Our system is still under development and the quality of
synthetic speech is not perfect yet. However, we present our
first evaluation on the performance of the current system in this
paper. We focus on our system’s description and its evaluation

1SSNT is a similar model to RNN transducer [14], a well-known
method in speech recognition. A notable difference is that SSNT sepa-
rates transition probability from output probability, which is a preferred
feature for TTS which is a task to predict continuous output.
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for a standard reading speech corpus in this paper. Its applica-
tion to a verbal performance corpus is investigated in [16], and
it shows effectiveness of our system in that corpus.

The rest of the paper is structured as follows. In Section
2, we overview end-to-end TTS systems with soft attention.
In Section 3, we describe the new encoder-decoder TTS using
marginalization of monotonic hard alignments and likelihood-
based learning. In Section 4, we show experimental results us-
ing the system under development, and we summarize our find-
ings in Section 5.

2. Overview of end-to-end TTS with soft
attention

Table 1 summarizes major end-to-end TTS methods. All the
existing systems consists of an encoder and decoder with atten-
tion as basic components. Most systems have a pre-net [2] at
the entrance of the decoder [2, 4, 5, 6]. Although some of the
earliest studies [1, 3] do not have the pre-net in the decoder, all
the others do after [2] introduced it.

The choice of target acoustic features is crucial for the end-
to-end approach [17]. Some of the earliest work chose vocoder
parameters as a target [1, 3]. Vocoder parameters are challeng-
ing because they have a long sequence length caused by fine
analysis conditions for reliable feature extraction. [2] used a
mel spectrogram with coarse-grained analysis conditions as tar-
get features to reduce the gap of the length between input text
and target acoustic feature sequences. All the other studies fol-
lowed the same condition [2, 4, 5, 6].

The attention mechanism is the core of those approaches.
Many attention mechanisms have been used for TTS. Additive
attention [7] and dot-product attention [18] are content based
families [8] that consider input content to align input to out-
put features. GMM attention [9] is a location based atten-
tion [8] that consider input location only. Location sensitive
attention [8] extends the additive attention by considering the
previous alignment, so it has both properties of content-based
and location-based attention. The systems using vocoder pa-
rameters [1, 3] seem to choose GMM attention. GMM attention
has monotonic progress properties for modes of attention dis-
tributions for input location, so it is suitable for predicting long
sequences like vocoder parameters. The systems based on CNN
or self-attention to enable parallel training [4, 6] seem to use
do-product attention which can be combined with positional en-
coding [19] for constructing sequential relations and an initial
monotonic alignment in parallel. The systems based on RNN
seem to use additive attention and its extension [2, 5, 10, 17].

In addition to the decoder, some systems have a post-net,
an additional network that predicts acoustic features. A post-net
was originally introduced to convert acoustic features to differ-
ent acoustic features that were suitable for an adopted wave-
form synthesis method, for example, from mel spectrograms to
linear spectrograms [2] or mel spectrograms to vocoder param-
eters [4]. In recent studies the role of the post-net was to im-
prove the acoustic features predicted by the decoder to improve
quality further [5, 6]. The post-net introduces an additional loss
term in the objective function.

Recent methods predicts binary stop flags to determine
when to stop prediction [5, 4, 6]. As opposed to predicting the
fixed length output, the stop flag enables avoiding unnecessary
computation. The stop flag introduces an additional loss term
in the objective function.

Speech is nondeterministic. An exactly identical utterance
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Figure 1: Trellis structure of our model. A path that connects x
and y represents alignment.

can not be reproduced in speech. To enable the randomness, [5]
enables dropout in pre-net during inference.

Although the aforementioned techniques have contributed
to the advancement of the end-to-end TTS, some issues remain
unsolved by these techniques. All content-based attentions and
their extensions do not guarantee forward progress of alignment
from the previous position. They include forward attention [10],
which extends the location sensitive attention by incorporat-
ing monotonic transition formulation. The GMM attention [9]
has monotonic progress properties for the mode position of
each Gaussian component. However, it sometimes gives broad,
mode-free, or multi-modal distributions that result in muffled
speech, possibly because it does not consider the content of in-
put. Monotonic attention [20] is the only attention mechanism
that guarantees monotonic progress by switching to hard atten-
tion during inference from soft attention during training, but it
is not successful for text-to-speech synthesis [4].

Learning stop flags seems to be trivial because it is just a
binary classification task and because only one boundary has a
flag turn from not to stopping to stopping. However, it tends
to overfit because its loss has an order of magnitude lower than
the acoustic feature loss term. To alleviate this problem, [6] in-
troduced higher weighting at the boundary where a flag reaches
a stop state in the binary loss term. The stop flag is an extra
complexity to implement such a trivial feature.

Enabling randomness for generated speech by dropout is
not widely utilized because the dropout is normally disabled
during prediction.

3. Proposed SSNT-based TTS
3.1. Model definition and learning of SSNT-based TTS

Let us denote the input letter or phone sequence as x1:I =
{x1, · · ·xI}, where xi is a i-th letter or phone of the input se-
quence. We then use y1:J = {y1, · · · ,yJ} and yj ∈ RD to de-
note an output acoustic feature sequence and acoustic features
at time j, respectively. Our approach is to model the output
acoustic feature sequence y1:J given a letter or phone sequence
x1:I by marginalizing all possible alignments over a trellis con-



Table 1: Summary of major end-to-end TTS methods. All existing methods use soft attention mechanism for implicit alignment learning.

System Network Alignment Decoder output Post-net output Waveform synthesis

Char2Wav [1] RNN GMM Vocoder - SampleRNN
Tacotron [2] RNN Additive Mel Linear Griffin-Lim
VoiceLoop [3] Memory buffer GMM Vocoder - WORLD
Deep Voice 3 [4] CNN Dot-product Mel Linear/Vocoder Griffin-Lim/WORLD/WaveNet
Tacotron 2 [5] RNN Location-sensitive Mel Mel WaveNet
Transformer [6] Self-attention Dot-product Mel Mel WaveNet
SSNT (proposed) RNN Hard Mel - WaveNet

sisting of the input and output sequences:

p(y1:J | x1:I) =
∑
∀z

p(y1:J , z | x1:I), (1)

where z = {z1, · · · zJ} = {1, 1, , · · · I−1, I} represents one of
the possible paths of the trellis. Figure 1 shows trellis structure
of our model. We then use the concept of SSNT [12, 13]. More
specifically, we factorize the joint probability of Eq. (1) into
an alignment transition probability and emission probability for
acoustic features with the 1st-order Markov assumption of z:

p(y1:J , z | x1:I) ≈
J∏

j=1

p(zj | zj−1,y1:j−1,x1:I)p(yj | y1:j−1, zj ,x1:I) (2)

and we use neural networks to compute the two probabilities.
To constrain the alignment probability as left-to-right with

a self transition, an alignment transition variable with two pos-
sible values, ai,j = {Emit, Shift} is further introduced for the
alignment probability of Eq. (2):

p(zj = i | zj−1,y1:j−1,x1:I) =
0 zj−1 > i

p(ai,j = Emit) zj−1 = i

p(ai−1,j = Shift)p(ai,j = Emit) zj−1 = i− 1

0 zj−1 < i− 1

(3)

Note that the Emit transition keeps the input position, while
Shift transition proceeds and reads one more input. Please
also note that p(ai,j = Emit) = 1− p(ai,j = Shift) and that
a neural network predicts only one of them.

The emission probability was a discrete distribution be-
cause SSNT was originally proposed for NLP tasks such as
abstractive sentence summarization, morphological inflection
generation, and machine translation and because its outputs are
words, the emission probability was a discrete distribution. In
our case, the output is continuous, and hence we have to define
our own emission probability distribution function. In this pa-
per, we simply use a multivariate Gaussian distribution as the
emission probability of the acoustic features:

p(yj | y1:j−1, zj ,x1:I) = N (yj ;µ, σ
2I) (4)

Note that µ is predicted by an encoder-decoder network with
autoregressive feedback similar to Tacotron.

Our model can be trained by minimizing the negative log
likelihood:

L(θ) = − log p(y1:J | x1:I ;θ)

= − logα(I, J) (5)

Here α(I, J) is a forward variable of the forward-backward al-
gorithm at the final input position I and the final time step J .
The final forward variable can be calculated recursively:

For j = 1,

α(i, 1) = p(z1 = 1 | x1:I)p(y1 | z1,x1:I)

For j > 1,

α(i, j) = p(yj | y1:j−1, zj ,x1:I)·{
α(i− 1, j − 1)p(zj = i | zj−1 = i− 1,y1:j−1,x1:I)

+ α(i, j − 1)p(zj = i | zj−1 = i,y1:j−1,x1:I)
}

(6)

The gradients of the negative log likelihood with respect to
θ can be computed using the standard back-propagation algo-
rithm. For more efficient gradient computation, the gradient can
be computed with the following form:

∂ log p(y1:J | x1:I ;θ)

∂θ
=

1

p(y1:J | x1:I ;θ)

I∑
i=1

J∑
j=1

∂p(y1:J | x1:I ;θ)

∂α(i, j)

∂α(i, j)

∂θ
(7)

Then the back-propagation can be combined via back-
ward operation of the forward-backward algorithms by intro-
ducing a backward variable β(i, j) and utilizing the relation
∂p(y1:J | x1:I ;θ)

∂α(i, j)
= β(i, j) [12, 21].

3.2. Inference of SSNT-based TTS

During prediction, the alignment variable zj is incremented by
sampling from the Bernoulli distribution with a parameter ob-
tained by normalizing the two nonzero cases of Eq. (3), namely,
zj = zj−1 + k, where k ∼ Bernoulli(p) and

p =
p(ai−1,j = Shift)p(ai,j = Emit)

p(ai,j = Emit) + p(ai−1,j = Shift)p(ai,j = Emit)
.

Note that this is different from a transition matrix in HMM
synthesis which models duration with exponential distribution.
Our system models transition of alignment as a latent variable
so our system do not define distribution of duration like HMM
synthesis.

In the original SSNT, its prediction stops when the EOS
token is the output. In our case, its prediction stops when the
alignment variable reaches the final input position2 causing all
of the input sequence to be used.

Acoustic features may be sampled from the Gaussian dis-
tribution using the conditional input at the sampled alignment

2[13] uses the same criteria to stop prediction to consume full input.
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Figure 2: Detailed network structure of the SSNT-based TTS
system.

position. However, in this paper, we simply use the mean of
the prediction probability distribution as the generated acoustic
features. We will investigate the random sampling strategy after
we properly estimate a full covariance of Eq. (4).

3.3. Network structure of SSNT-based TTS

Figure 2 shows the detailed network structure of the system for
SSNT-based speech synthesis system. The network consists of
an encoder and decoder. The encoder processes either a letter
or phone sequence. We then use the CNN-based encoder [5],
which consists of a stack of convolutional layers, and a bidirec-
tional LSTM layer [22].

The decoder processes the acoustic feature sequence in an
autoregressive manner. The predicted acoustic features from the
previous time step are first processed by the pre-net [2], which
consists of fully connected layers with ReLU activation [23]
and dropout regularization [24]. The pre-net’s output is passed
through a stack of LSTM layers [25]. The LSTM stack’s output
is concatenated with the encoder’s output and then transformed
by a fully connected layer with tanh activation. The output of
tanh nonlinearity is passed to two networks. One is a fully con-
nected layer with sigmoid activation to compute the alignment
transition probability p(ai,j) of Eq. (3). The other is a linear
layer to compute the emission probability of Eq. (4).

4. Experiments
4.1. Experimental conditions

We used the same conditions as in our previous experiment [17].
A Japanese speech corpus from the ATR Ximera dataset [26]
was used. This corpus contains a total of 28,959 utterances from
a professional female speaker and is around 46.9 hours in dura-
tion. We used manually annotated phonemes labels [27]. The
phoneme labels had 58 classes, including silences, pauses, and
short pauses. All sentences start and end with a silence sym-

analysis by synthesis Tacotron proposed system

ABS Self-attention
Tacotron

Tacotron SSNTNatural

Figure 3: MOS scores of subjective evaluation.

bol. Although Japanese is a pitch-accented language, we did
not use accentual type labels in this paper. To train our pro-
posed systems, we trimmed the beginning and ending silence
from the utterances, after which the duration of the corpus was
33.5 hours. Fixed length silences were prepended and appended
to target mel spectrogram. These data preparation made any
phoneme symbols inappropriate to be skipped. The frame size
and shift used for the mel spectrogram were 50 ms and 12.5 ms,
respectively. We used 27,999 utterances for training, 480 for
validation, and 480 for testing.

Phoneme embedding vectors have 256 dimensions. For the
encoder, we used the same conditions as [5]. For the decoder,
we used two pre-net layers with 256 and 128 dimensions, two
LSTM layers with 256 dimensions each, and two fully con-
nected layers for context projection with 256 dimensions each.
We applied zoneout regularization [28] to all LSTM layers with
probability 0.1 as in [5]. We set the reduction factor [2] to be 2.
The Adam optimizer was used for training [29]. The validation
loss was steady so we stopped training at 510 epochs by check-
ing quality of predicted spectrogram in validation set. Finally,
we used µ-law WaveNet for the waveform generation [30].

4.2. Subjective evaluations

We conducted a listening test to measure the quality of syn-
thetic speech. We chose Japanese Tacotron and self-attention
Tacotron without accentual type labels [17] as baselines in this
experiment. All the synthetic speech waveforms were generated
using the identical WaveNet model, which was trained using
natural mel spectrograms with a 12.5 ms frame shift and 16 kHz
sampling frequency.

We recruited 104 native speakers of Japanese as listeners by
crowdsourcing. The listeners evaluated 40 audio samples that
contained eight randomly selected sentences generated by each
of five systems in a random order in a single test set. The sys-
tems included natural speech and analysis-by-synthesis in ad-
dition to our system and the two aforementioned baseline sys-
tems. One listener could evaluated at most ten test sets. One
audio sample was evaluated five times, and we got a total of
19,200 data points.

Figure 3 shows the results of the subjective evalua-
tion. Among the baseline systems, self-attention Tacotron
got 3.13±0.03, and Japanese Tacotron got 3.05±0.03. The
scores of the baseline systems are consistent with the previous
work [17]. The scores were relatively low because we did not



provide any pitch accentual type labels, even though Japanese
is a pitch-accented language. Our system got a MOS score of
2.33±0.03. Unfortunately, it was rated lower than the baseline
systems.

To understand the reasons, we did a simple investigation
of generated audio files and discovered out our model overesti-
mated the phoneme duration, especially for pauses within a sen-
tence. Pauses had much longer duration than other phonemes,
but, its acoustic features had less useful information; hence, de-
ciding when Shift transition should be made would be diffi-
cult. Figure 4 shows an example sample that has alignment er-
ror of overestimation of pause duration. In fact, the MOS score
of sentences that did not include pauses was 2.75 ± 0.06 and
3.24± 0.05 for SSNT and Tacotron, respectively, and the score
difference was smaller. We also discovered that our method
needed longer training time due to the marginalization process.
The performance might be improved after using sufficiently
long training periods.

4.3. Discussions

We designed the alignment structure to be hard and monotonic,
which enabled us to avoid some alignment errors that are com-
monly observed in soft-attention-based approaches. Such align-
ment errors include muffling, skipping, and repeating. Muf-
fling error is caused by an attention distribution without a sharp
mode, skipping error is caused by discontinuous attention, and
repeating error is caused by a repeat of backward jumps of
the mode of attention. These errors were not observed in our
method because they could not happen by definition.

However, we still observed different types of alignment er-
rors in our samples, such as prolongations of vowel duration.
We also observed that even though the alignment looked accept-
able, that is, a monotonic increase occurred, wrong phonemes
were sometimes generated due to a poorly trained model. When
the alignment was not properly specified, its emission probabil-
ity could be learned from different acoustic segments. This is
a disadvantage of SSNT’s hard alignments. However, we also
found an advantage with the hard alignment. From our informal
listening of generated speech, compared with soft-attention-
based methods, speech generated from our method tended to
have relatively distinct pronunciation.

5. Conclusions
We proposed a new method for end-to-end TTS without soft
attention. In contrast with soft attention based methods, our
method has a simpler architecture and ensures monotonic align-
ment structure by design. Our method represents an align-
ment variable as a latent variable, and the model can be trained
by maximizing the total probability that can be derived by
marginalizing the latent alignments. During inference, the
alignment variable can be randomly sampled from the learned
distribution, and the inference simply stops when the alignment
reaches the final input position.

Thanks to the design of hard and monotonic alignment, our
proposed method could avoid some alignment errors that were
commonly observed in soft attention based approaches. Our
method also replaced many engineering features in soft atten-
tion based approaches with a probabilistic approach, which in-
cluded advanced attention mechanisms to enforce a monotonic
alignment, stop flag prediction network, and nondeterministic
inference by dropout.

Although our analysis revealed that some generated speech
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Figure 4: A sample that shows overestimation of pause dura-
tion.

contained another type of alignment errors, and although a sub-
jective evaluation showed that the quality of synthetic speech
from our system was not yet competitive with soft attention
based methods on the reading speech corpus yet, our other re-
search showed the effectiveness of the proposed method on a
verbal performance corpus that is much more challenging data
than reading speech [16].

Our future work includes performance optimization for
faster training of SSNT-based TTS. We expect fast training will
help to reduce the remaining alignment errors induced by insuf-
ficient training time. In addition, we plan to use a more com-
plex probability distribution function for the emission probabil-
ity of the acoustic features. In this study, we chose the isotropic
Gaussian distribution for the emission probability. This was not
an ideal choice because the target mel spectrogram had a clear
correlation across frequency dimensions. We expect that full
covariance modeling will enable random sampling of acoustic
features and that a sufficiently complex probability distribution
will lead to higher quality generated speech.
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